沒有找到合適的產(chǎn)品?
聯(lián)系客服協(xié)助選型:023-68661681
提供3000多款全球軟件/控件產(chǎn)品
針對軟件研發(fā)的各個階段提供專業(yè)培訓(xùn)與技術(shù)咨詢
根據(jù)客戶需求提供定制化的軟件開發(fā)服務(wù)
全球知名設(shè)計軟件,顯著提升設(shè)計質(zhì)量
打造以經(jīng)營為中心,實現(xiàn)生產(chǎn)過程透明化管理
幫助企業(yè)合理產(chǎn)能分配,提高資源利用率
快速打造數(shù)字化生產(chǎn)線,實現(xiàn)全流程追溯
生產(chǎn)過程精準(zhǔn)追溯,滿足企業(yè)合規(guī)要求
以六西格瑪為理論基礎(chǔ),實現(xiàn)產(chǎn)品質(zhì)量全數(shù)字化管理
通過大屏電子看板,實現(xiàn)車間透明化管理
對設(shè)備進(jìn)行全生命周期管理,提高設(shè)備綜合利用率
實現(xiàn)設(shè)備數(shù)據(jù)的實時采集與監(jiān)控
利用數(shù)字化技術(shù)提升油氣勘探的效率和成功率
鉆井計劃優(yōu)化、實時監(jiān)控和風(fēng)險評估
提供業(yè)務(wù)洞察與決策支持實現(xiàn)數(shù)據(jù)驅(qū)動決策
打通數(shù)據(jù)孤島 實現(xiàn)生產(chǎn)過程全透明化
實現(xiàn)產(chǎn)品全生命周期的質(zhì)量管理與追溯
精準(zhǔn)制定生產(chǎn)計劃 合理配置生產(chǎn)資源
全面可視的生產(chǎn)質(zhì)量統(tǒng)計與追溯
一鍵生成排產(chǎn)計劃,有效提升資源利用率
打通生產(chǎn)過程數(shù)字化全鏈路,提高生產(chǎn)效率
幫助企業(yè)大幅降低因改裝質(zhì)量問題帶來的損失
打造數(shù)字化工廠,全面提升產(chǎn)品質(zhì)量
快速應(yīng)對訂單變化,大幅減少企業(yè)資源浪費
實現(xiàn)產(chǎn)品報價快速精準(zhǔn),全面實現(xiàn)生產(chǎn)透明化
打造生產(chǎn)計劃自動排產(chǎn)信息化平臺
可用于windows XP/7的高度圖形化的神經(jīng)網(wǎng)絡(luò)開發(fā)工具
標(biāo)簽:神經(jīng)網(wǎng)絡(luò)開發(fā)數(shù)據(jù)建模開發(fā)商: NeuroDimension Lnc
當(dāng)前版本: v7.1.1.0
產(chǎn)品類型:軟件
產(chǎn)品功能:算法
平臺語言:英文
開源水平:不提供源碼
本產(chǎn)品的分類與介紹僅供參考,具體以商家網(wǎng)站介紹為準(zhǔn),如有疑問請來電 023-68661681 咨詢。
NeuroSolutions is a highly graphical neural network development tool for Windows XP/Vista/7. This leading edge software combines a modular, icon-based network design interface with an implementation of advanced learning procedures and genetic optimization. The result is a virtually unconstrained environment for designing neural networks for research and for solving real-world problems.
* 關(guān)于本產(chǎn)品的分類與介紹僅供參考,精準(zhǔn)產(chǎn)品資料以官網(wǎng)介紹為準(zhǔn),如需購買請先行測試。
NeuroSolutions的主要功能
輸入投影
通過自動將多條信息映射至單一輸入,進(jìn)一步減小了輸入的規(guī)模
輸入優(yōu)化
通過貪婪搜索回除法和其他方法自動決定最有用的輸入
CUDA GPU處理
NeuroSolutions的用戶可以通過使用NeuroSolutions CUDA插件管理NVIDIA顯卡的強(qiáng)大處理能力
更快的處理速度
軟件改進(jìn)了對多核處理器的使用,優(yōu)化了可執(zhí)行編碼,這都使得訓(xùn)練時間極大的減少
支持向量機(jī)回歸
支持向量機(jī)回歸(SVM-R)
增強(qiáng)了隨機(jī)神經(jīng)網(wǎng)絡(luò)的支持
神經(jīng)模糊
其神經(jīng)模糊系統(tǒng)(CANFIS)模型集成了神經(jīng)網(wǎng)絡(luò)的模糊輸入,一邊快速的解決模糊定義的問題
支持向量機(jī)
其支持向量機(jī)(SVM)模型將輸入映射入一個大尺寸的特征空間,然后通過對與數(shù)據(jù)邊界叫相近的輸入數(shù)據(jù)進(jìn)行隔離,以最優(yōu)化的將數(shù)據(jù)分離入其相應(yīng)的類中。這在分離那些共享著復(fù)雜的邊界的數(shù)據(jù)集尤其有效。
Levenberg-Marquardt
第二序列學(xué)習(xí)算法較原動力學(xué)習(xí)算法在速度上有了相當(dāng)大的提高,并且往往出錯率更低
導(dǎo)師強(qiáng)迫/迭代預(yù)測
有一些時間序列問題能通過一種被稱為“導(dǎo)師強(qiáng)迫”的方式進(jìn)行最佳模式化處理。為提高多部預(yù)測的準(zhǔn)確率,這種特殊的訓(xùn)練算法將預(yù)測的輸出結(jié)果反饋入了輸入中。
臨時神經(jīng)網(wǎng)絡(luò)
NeuroSolutions是當(dāng)前少數(shù)幾種完全支持通過時間反向傳播(BPTT)的神經(jīng)網(wǎng)絡(luò)開發(fā)工具之一。其與傳統(tǒng)的將靜態(tài)輸入映射入一個靜態(tài)輸出不同,BPTT可以將一系列輸入映射入一系列輸出中,這使得其可以通過提取數(shù)據(jù)每次的變化來解決臨時的問題。
用戶自定義的神經(jīng)拓補(bǔ)結(jié)構(gòu)
NeuroSolutions是基于以下內(nèi)容而應(yīng)用的,即神經(jīng)網(wǎng)絡(luò)可以分解為一個神經(jīng)組件的基礎(chǔ)性集合。每一個單獨的組件都是相對簡單的,但是將多個組件連接起來以后,其即可組成網(wǎng)絡(luò)以解決相當(dāng)復(fù)雜的問題。網(wǎng)絡(luò)組建向?qū)Э梢愿鶕?jù)用戶指定的條件為之連接相應(yīng)的組件。然而,一旦該網(wǎng)絡(luò)創(chuàng)建好了,用戶即可任意的改變其相互聯(lián)系或者添加入新的組件,換而言之,即幾乎可以創(chuàng)建無限的神經(jīng)模型。
用戶自定義的神經(jīng)組件
每一個NeuroSolutions組件都應(yīng)用了一個函數(shù)以遵循一個C編寫的簡單協(xié)議。如需添加一個新的組件,用戶只需簡單的修改基礎(chǔ)組件的模板函數(shù),然后將其代碼編譯為一個DLL文件---這一切都可以在NeuroSolutions中完成!
C++代碼生成
通過使用NeuroSolutions開發(fā)者層級,應(yīng)用程序開發(fā)員可通過使用自定義解決方案向?qū)蒁LL或為網(wǎng)絡(luò)生成C++源碼的方式將NeuroSolutions神經(jīng)網(wǎng)絡(luò)集成入其應(yīng)用程序中。該NeuroSolutions代碼生成工具如同其面向?qū)ο蟮拈_發(fā)環(huán)境一樣穩(wěn)健。無論您在圖形用戶界面中創(chuàng)建的神經(jīng)網(wǎng)絡(luò)是多么的簡單或者復(fù)雜,NeuroSolutions都能生成等價的ANSI C++源碼的神經(jīng)網(wǎng)絡(luò)—即使這些神經(jīng)網(wǎng)絡(luò)中以DLL的方式含有您自己設(shè)計的算法。
大量的探索功能
神經(jīng)網(wǎng)絡(luò)因為其“黑箱子”技術(shù)經(jīng)常被用戶批評,但NeuroSolutions提供了大量通用的探索工具集,用戶便再也無需擔(dān)心這種情況的發(fā)生了。探索工具使得用戶可以實時的訪問內(nèi)部網(wǎng)絡(luò)參數(shù),比如:
輸入/輸出
權(quán)重
錯誤
隱藏狀態(tài)
漸變
敏感性
探索在神經(jīng)網(wǎng)絡(luò)設(shè)計中是非常重要的一步,因此我們將之處理成為NeuroSolutions中集成的一部分。和神經(jīng)組件一樣,探索組件也是模塊化的,用戶瀏覽數(shù)據(jù)的方式與數(shù)據(jù)展現(xiàn)的形式無關(guān)。所有的神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)都是通過一個通用協(xié)議進(jìn)行報送的,且所有的 NeuroSolutions都能理解這個協(xié)議,因此這使得用戶可以訪問所有內(nèi)部變量以及可以通過大量的觀看它們的方法。
遺傳優(yōu)化
NeuroSolutions的用戶層以及以上層級包含了遺傳優(yōu)化功能。遺傳優(yōu)化功能使得用戶可以對神經(jīng)網(wǎng)絡(luò)中的任意參數(shù)進(jìn)行優(yōu)化,以降低出錯率。比如,用戶可以對隱藏單元的數(shù)量,學(xué)習(xí)率,以及輸入選擇等進(jìn)行優(yōu)化以提高神經(jīng)網(wǎng)絡(luò)的性能。
敏感度分析
敏感度分析是一種用于提取神經(jīng)網(wǎng)絡(luò)的輸入與輸出之間的原因以及影響關(guān)系的方法。其基本的設(shè)計理念是,神經(jīng)網(wǎng)絡(luò)的輸入通道發(fā)生輕微偏移,輸出端即可相應(yīng)的對之進(jìn)行報告。那些只產(chǎn)生較小的敏感值的輸入通道將被視為無關(guān)緊要的,因此常常被從神經(jīng)網(wǎng)絡(luò)中移除掉,這種操作減小了神經(jīng)網(wǎng)絡(luò)的規(guī)模,而這也反而減少了網(wǎng)絡(luò)的復(fù)雜性以及所需的訓(xùn)練時間。此外,這還將提高網(wǎng)絡(luò)對樣本數(shù)據(jù)測試的性能。
樣本加權(quán)
分類問題中往往每一個類都不可能具有相同數(shù)目的訓(xùn)練樣本,比如,用戶可能擁有一個用于檢測臨床測試數(shù)據(jù)中癌癥發(fā)生概率的神經(jīng)網(wǎng)絡(luò)應(yīng)用程序,該問題的測試數(shù)據(jù)可能包含了99個分類為非癌癥患者的樣本,以及一個被標(biāo)記為癌癥患者的樣本數(shù)據(jù)。此時,一個標(biāo)準(zhǔn)化得神經(jīng)網(wǎng)絡(luò)將往往將所有的樣本分類為非癌癥患者,因此其有99%的準(zhǔn)確率,而事實上,其目的應(yīng)該是檢測到存在的癌癥患者,因此這暴露出了問題。
NeuroSolutions為用戶提供了一種更佳的解決方案,即使用了一種名為加權(quán)的方式。以以上例子為例,訓(xùn)練樣本中的每一個癌癥患者在反向傳播中都將擁有比非癌癥患者高99倍的權(quán)重。這種平衡訓(xùn)練數(shù)據(jù)的方式使得系統(tǒng)能 以一種更有的方式進(jìn)行癌癥數(shù)據(jù)的檢測。
宏指令
NeuroSolutions擁有一套綜合全面的宏語言,這使得用戶可以記錄操作的順序,并將之存貯為程序。每一個可以使用鼠標(biāo)或者鍵盤進(jìn)行操作的動作都可以使用一條宏語句操作。這項強(qiáng)大的功能使得用戶在構(gòu)建,編輯和運行神經(jīng)網(wǎng)絡(luò)時擁有了前所未有的靈活性。
OLE自動化
lNeuroSolutions是一個完全兼容OLE自動化的服務(wù)器。這意味著其可以從OLE自動化控制器中接受控制信息,比如Visual C++, Visual Basic, Microsoft Excel, Microsoft Access, 和Delphi.等
NeuroSolutions Features
NeuroSolutions is one of the few neural network development tools to fully support backpropagation through time (BPTT). Instead of mapping a static input to a static output, BPTT maps a series of inputs to a series of outputs. This provides the ability to solve temporal problems by extracting how data changes over time.
NeuroSolutions is based on the concept that neural networks can be broken down into a fundamental set of neural components. Individually these components are relatively simplistic, but several components connected together can result in networks capable of solving very complex problems. The network construction wizards will connect these components for you based on your specifications. However, once the network is built you can arbitrarily change interconnections and/or add in new components. In other words, a virtually infinite number of neural models are possible!
Every NeuroSolutions component implements a function conforming to a simple protocol in C. To add a new component you simply modify the template function for the base component and compile the code into a DLL -- all directly from NeuroSolutions!
An application developer can integrate a NeuroSolutions neural network into their application by generating a DLL with the Custom Solution Wizard or by generating the C++ source code for the network using the Developers level of NeuroSolutions. The source code generation facility of NeuroSolutions is as robust as its object-oriented design environment. No matter how simple or complex of a network you create within the graphical user interface, NeuroSolutions will generate the equivalent neural network in ANSI C++ source code -- even those networks that contain your own algorithms implemented with DLLs!
Neural networks are often criticized as being a "black box" technology. With NeuroSolutions' extensive and versatile set of probing tools, this is no longer the case. Probes provide you with real-time access to all internal network variables, such as:
Probing is an important step in the neural network design process, therefore we have made it an integral part of NeuroSolutions. As with the neural components, the probe components are inherently modular; the way you view the data is independent of what the data represents. All network data are reported through a common protocol, and all NeuroSolutions probes understand this protocol. This provides you with access to all internal variables, along with a variety of ways to visualize them.
The Users level of NeuroSolutions and above include Genetic Optimization. Genetic Optimization allows you to optimize virtually any parameter in a neural network to produce the lowest error. For example, the number of hidden units, the learning rates, and the input selection can all be optimized to improve the network performance.
Sensitivity analysis is a method for extracting the cause and effect relationship between the inputs and outputs of the network. The basic idea is that each input channel to the network is offset slightly and the corresponding change in the output(s) is reported. The input channels that produce low sensitivity values can be considered insignificant and can most often be removed from the network. This will reduce the size of the network, which in turn reduces the complexity and the training time. Furthermore, this will likely also improve the network performance for the out-of-sample testing data.
Classification problems often do not have an equal number of training exemplars (samples) for each class. For example, you may have a neural network application that detects the occurrence of cancer from clinical test data. The training data for this problem may contain 99 exemplars classified as non-cancerous for every one exemplar classified as cancerous. A standard neural network would most often train itself to classify all exemplars as non-cancerous so that it would be 99% correct. Since the goal is to detect the existence of cancer, this is a problem.
NeuroSolutions provides a better solution using a method called exemplar weighting. For the example above, each of the cancerous training exemplars would have 99 times more weight during the backpropagation procedure than the non cancerous exemplars. This balancing of the training data will most likely result in a system that does a much better job of detecting the cancerous cases.
NeuroSolutions has a comprehensive macro language, which allows the user to record a sequence of operations and store them as a program. Any action that can be performed using the mouse and keyboard can be duplicated with a macro statement. This powerful feature gives the user unprecedented flexibility in constructing, editing, and running neural networks.
NeuroSolutions is a fully compliant OLE Automation Server. This means that NeuroSolutions can receive control messages from OLE Automation Controllers, such as Visual C++, Visual Basic, Microsoft Excel, Microsoft Access, and Delphi.
更新時間:2019-01-22 13:26:43.000 | 錄入時間:2011-05-17 16:08:29.000 | 責(zé)任編輯:陳俊吉
是一款科學(xué)計算軟件,為網(wǎng)絡(luò)、 圖像、 幾何學(xué)、 數(shù)據(jù)科學(xué)、 可視化、機(jī)器學(xué)習(xí)等領(lǐng)域提供了有效算法。
軟件它是一個將 Wolfram|Alpha 和Mathematica 精華融匯于一身的獨立統(tǒng)一工具。
軟件使用動態(tài)內(nèi)存中列式技術(shù)加速分析數(shù)據(jù)
控件提供統(tǒng)計計算和生物統(tǒng)計學(xué)領(lǐng)域的處理功能,包括描述統(tǒng)計、概率分布、組合功能、多重線型回歸、假設(shè)檢驗、方差分析計算和多元統(tǒng)計
控件NMath是一個.NET的數(shù)學(xué)庫,包含了NET平臺上的面向?qū)ο髷?shù)字計算的基礎(chǔ)類。
官方微信
官方微博
服務(wù)電話
重慶/ 023-68661681
華東/ 13452821722
華南/ 18100878085
華北/ 17382392642
客戶支持
技術(shù)支持咨詢服務(wù)
服務(wù)熱線:400-700-1020
郵箱:sales@evget.com
關(guān)注我們
地址 : 重慶市九龍坡區(qū)火炬大道69號6幢
慧都科技 版權(quán)所有 Copyright 2003- 2024 渝ICP備12000582號-13 渝公網(wǎng)安備 50010702500608號